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ABSTRACT

The two-dimensional diffusion equation has been solved by an integral method to obtain the distribution
of ground-level concentration of an inert effluent emitted from a semi-infinite area source in a steady-state
and horizontally homogeneous atmospheric surface layer. Mean wind velocity and eddy diffusivity profiles
derived from empirically determined flux-profile relations of Businger ef al. (1971) for stable and unstable
surface layers were used. It is found that concentration as a function of downwind distance can be described by
a simple formula over distances of practical interest in surface layer dispersion. Corresponding results for a
cross-wind infinite line source are obtained by simple differentiation. The concentration distribution is
completely determined by the friction velocity w,, the Monin-Obukhov length L, the roughness length g,
and the effluent source strength Q. The generalization of the integral method needed to obtain accurate
solutions of the diffusion equation with the given wind velocity and diffusivity profiles is discussed in an

appendix.

1. Introduction

For the study of dispersion of inert effluents from
area and infinite line sources, which is of particular
interest in air pollution problems, one may neglect
diffusion in the horizontal direction and write the
diffusion equation as

()ax_~ 0 .
v = KE—, )

where X (x,2) is the concentration of the effluent, %(z)
the mean wind velocity, and K(z) the coefficient of
turbulent diffusion. The wind is assumed to be directed
along the x axis. Recently we have analyzed this
equation with the approximations

u(z)=upz?, K(z)=Ks". 2)

The exact solution of (1) with profiles (2) for area
sources has been obtained (Lebedeffi and Hameed,
1975b). We have also solved this problem using an
integral method (Lebedeff and Hameed, 1975a ; Hameed
and Lebedeff, 1975). Comparisons with the exact solu-
tion show that the integral method yields accurate
solutions of the diffusion equation for area sources in
all regimes of (a,8) of practical interest. The power law
representation of u(z) and K(z) provides a useful
approximation to the surface layer profiles under many
conditions and has been extensively used in micro-
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meteorology (Pasquill, 1974). In recent years, however,
field measurements have been carried out which when
combined with Monin-Obukhov’s similarity theory
give more realistic parameterizations of the surface
layer. In this paper we will apply the integral method
to solve the diffusion equation with such empirically
obtained profiles of #(z) and K(z). We will find that
the surface distribution of concentration downwind of
an area or a crosswind line source can be described by
simple laws.

The surface layer is the lowest part of the atmospheric
boundary layer where the vertical fluxes of momentum,
heat and moisture are approximately constant. For
steady-state conditions, and with homogeneity in the
horizontal direction, Monin-Obukhov similarity theory
shows that #(z) and K (3) are determined by a function
e(z/L): ‘

kz Ou(z)

k
= e/ L) =

K (z),

Uy Oz

®

where %, is the friction velocity, & the von Kirmin
constant, and L the Monin-Obukhov stability length.
Most data from field measurements are found to be well
represented if the function ¢ is written as [see, e.g.,
Businger ef al. (1971); Paulson (1970) ; Webb (1970)]

{l-l-ﬁz/L, L20

@
(1—vyz/L)y*%, LLO.

Some empirical estimates of the parameters B, v, k are
shown in Table 1.
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Tasie 1. Estimated values of parameters in the flux-profile
relationships (3) and (4).

B v k
Businger et al. (1971) 4.7 15 0.37
Paulson (1970) 7 16 0.4
Webb (1970) 5.2 18 0.41

The depth of the surface layer is not uniquely defined
but is usually of the order of several tens of meters. The
lower boundary is taken at z=z, the local roughness
length. Thus if 2, %, and L are known, the turbulent
characteristics of the surface layer are completely
specified through Egs. (3) and (4). Solution of the
diffusion equation with these profiles is therefore ex-
pected to give more realistic estimates of pollution
dispersion in the surface layer than with the power law
profiles of Eq. (2). The limited vertical range of applica-
bility of these profiles restricts application to small
horizontal distances, especially under unstable condi-
tions. However, since the dynamics of the planetary
boundary layer above the surface layer is more com-
plicated and not as well determined,.we will confine
our attention to the study of dispersion in the surface
layer in this paper. Also, since relations (3) and (4)
have been verified only for steady-state and horizontally
homogeneous conditions they are not applicable to
typical urban atmospheres which are characterized by
spatial variations in surface roughness and thermal
effects. Our aim in this paper is, first, to show that the
integral method can be extended to solve the diffusion
equation with profiles of #(z) and K(z) more general
than the power laws of Eq. (2) and, second, to solve
the diffusion equation with empirically determined
profiles of #(z) and K (2) so that the predicted concen-
tration distributions could be compared with diffusion
experiments.

We will consider a semi-infinite area source extending
from =0 to x= o, The emission of effluent is assumed
to be uniform and constant, given by the condition

X
K(z)—T= ‘—QO(JC), 2=2o, (5)
dz

where 6(x) is the step function:

0 for vx<0
0(x)=
1 for x20.

We note that X /dx is also a solution of the diffusion
equation (1). Differentiation of (5) with respect to x
gives
9 0X
K (z)——=—Qb (),

0z dx ©

2=2y,

where 8 (x) is the Dirac delta function. Eq. (6) describes
the emission of a constant effluent flux by an infinite
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line source located at x=0. Thus the solution of the
line source problem is obtained from that of the area
source by differentiation with respect to x. For this
reason we will first obtain the solution of the diffusion
equation for an area source.

Eq. (1) has been solved previously for an infinite line
source by several authors who employed numerical
methods. Yamamoto and Shimanuki (1961) used a
“generalized mixing length theory” and obtained the
function ¢(z/L) from

¢ (3/L) *—1=0.

Yordanov (1973) has used K profiles in the surface
layer similar to (3) and (4) but with a constant value
of wind velocity. Ragland and Pierce (19753) solved
the problem for a finite width line source, included
diffusion in the y direction, and considered the wind
direction parallel and at 45° to the source, in addition
to being at right angles to it. Dispersion from a volume
source, l.e., an area source with an assigned depth, has
been numerically modeled by Egan and Mahoney
(1972). As mentioned earlier, we will approach the
problem using the integral method. One advantage of
the method compared to the numerical techniques is
the considerable reduction in labor. Also, uncertainties
and errors encountered in the numerical solution of the
partial differential equation (1) due to the singularity
at the line source are avoided (see Yamamoto and
Shimanuki, 1961). In the next section we formulate
the problem and develop its solution by the integral
method. Results are presented in Section 3 and con-
clusions in Section 4. Some aspects of the integral
method of interest to the present problem are sum-
marized in the Appendix.

2. Solution of the diffusion equation by the
integral method

The similarity functions (4) define the mean profile
distributions in the surface layer for arbitrary stability
[Eq. (3)). Thus

K@)=ku,Ls/ on(§), where {=3z/L, )]
and ©
uye ° () %
w@)=— [ &= = U@~ fa], ®
o
where
So=12/L,
Inf+6¢, L>0
fm ()= 14 (=)}
2g (1)t -————-—I <.
g (1—¢) nl_(l_m*
Defining

E:ki’_, N=__X) Fm(§)= B
L Q en($)
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the diffusion equation (1) with mean wind velocity and
diffusivity given by (7) and (8) may be written as

€)= fn(80)] o aF (3 )\BN )
[fmg- fm ?0 85—6§' m 63',
- and the flux boundary condition (5) becomes
N
Fu(§)—=—1, ¢=to (10)
a¢ :

We also have the condition that concentration at the
upwind edge of the area source is zero, i.e.,

N(05)=0. (11)

Once the velocity and diffusivity functions f, and Fn,
are specified the problem posed in Egs. (9)-(11) depends
on only one external parameter {y. The functions f,
and F,, obtained using the parameters given by
Businger et al. (1971), are displayed in Figs. 1a and b.
The difference between the stable and unstable cases
increases with increase in z/L; thus, the wind velocity
is larger and the diffusivity smaller in the stable case
in comparison with the unstable case. Thus we may
expect that, for a given z/L, the efluents would have
a shallower vertical spread in the stable case; this
shallow layer would, however, be subjected to a stronger
wind and -would be carried to greater distances
downwind.

In order to apply the integral method to the solution
of (9)-(11), we first note that Fn({)={/on(t) varies
linearly with ¢ near {=0, for both L>0 and L<O.
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Fi6. la. Vertical profile of the mean wind velocity.

0
0.00t

JOURNAL OF APPLIED

METEOROLOGY VOLUME 135
2.0 T T T T T T T
— UNSTABLE
F ——=— STABLE J
K of .
kLux
L ]
0 "’_—L | T R o
0 02 04 06 08 10

18

Fic. 1b. Vertical profile of the diffusion coefficient.

[See Eq. (4), the definition of ¢n(f).] It is therefore
convenient to introduce the variable

w=expfu(®)~fn(t0)] (12)
in terms of which (9)-(11) are written
oN o aN
Unm(@)—=—w—, (9a)
3 v dw
. ON
w—=—1, w=1, (10a)
Jw
N(0,w)=0, (11a)

where

dw L) = ful$0)]
Up(w)=Inw — )= . (13
(@) =ln /(dﬁ‘) en () explfun () — fm(Fe)]

In Eq. (9a), the effective diffusivity is w while the
effective wind velocity profile appears as Um(w). From
the discussion in the Appendix we know that when
diffusivity is a linear function an accurate solution of
the diffusion equation is obtained if we use the
Ansatz:

N(E,w)=—n(€)(1~%>21n<%>, A1, (14)

where the minus sign has been introduced for con-
venience. A (£) represents the depth of the contaminated
layer in the w space outside of which effluent density N
and its vertical flux are taken to be zero; A> 1 because
the coordinate w=1 at the lower boundary z..

Application of the flux condition (10a) to (14) then
gives

A?

(A—1)(A—1+2Ina)’

n(8)= (15)

Substituting this expression in (14) and taking w=1
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then yields the required concentration at the surface
Z2=1Zg:
(A—1) InA

—_— (16)
(A—1+42 InA)

No(§)=

To solve for A(£) we integrate (9a) from w=1to w=A
to obtain

w=A
=1

w=1

a ra 3
—/ Un(w)N (£,0)do=w—
At/

w

using (10a) and (A2). Integration over & now gives

—a(4) /1 ’ Um(w)(l—%)z 1n<%>dw=§, a7

where A is the effective depth of the contaminated layer
in w space. Let the corresponding depth in { space be é.
From Eq. (12) we then have

A=expl fu(®)—fm(o) ]
Using Eqgs. (12) and (13), Eq. (17) now becomes

(18)

—n(a) 6[fm(§)—fm(§o)3(1—%)2 ln(%)dr=s, (170)

fo

where

§=exp[fm(§)—fm(5)]:

from (12) and (18). Since & physically represents the
depth of the polluted layer it is a monotonically in-
creasing function of £ It is thus straightforward to
calculate the left-hand side of (17a) for successively
increasing values of & and obtain the relationship

A. LEBEDEFF AND S.

HAMEED 329

between 8 and £, and hence the surface concentration
No(g) by (16).

3. Results and discussion

By means of the method described in the previous
section for an area source we have computed concen-
tration as a function of downwind distance for a number
of values of ¢, ranging between 0.1 and —0.1. We find
that the differences between the predictions of the
different parameterizations of the function ¢(z/L)
given in Table 1 are small. For L>0, the use of Paulson’s
value of 8=7 results in an overestimation of concen-
tration by at most 109, in comparison with the Businger
el al. and Webb models. For L<O0, the differences
between the three predictions are much smaller. For
simplicity, in the following we will give results obtained
with the parameter values of Businger e al. only. In
Fig. 2a area source results are presented for different
values of {o in the format of a log-log plot of surface
concentration Nqvs £/¢o= k*x/20. The following features
are noteworthy in this figure:

1) Concentration at a downwind distance x is always
larger in stable conditions as compared to unstable
conditions.

2) Concentration at a given x increases with o in
the stable regime but decreases with increasing |¢o| in
the unstable regime.

3) For very stable regimes, i.e., as {o becomes large,
the curve in Fig. 2a tends to become a straight line.
The departure from the straight line behavior increases
as the stability decreases.

The approximate linearity of the curves in Fig. 2a
suggests that they may be accurately represented by a
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SURFACE CONCENTRATION VS, DOWNWIND DISTANCE
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F1G. 2a. Predicted concentration at z=2, as a function of downwind distance for an area source.
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rapidly converging series of the form
InNo= A+ B Inf+C(In&)>+D(Inf)’+. . ..

For each {o we have fitted the computed concentration
with 2, 3, 4 and 5 terms in this series in the region
102< k2x/2o< 108, (These limits roughly define the region
of practical interest in observing dispersion in the sur-
face layer.) We find that the contribution of the 4th
and 5th terms in the series (19) is always small and the
mean relative error is no more than 3% if they are
neglected. We may therefore write

No(f) =eApB+C Ink,

(19)

(20)

The parameters A, B and C are functions of {q and are
shown in Fig. 2b. We find that 4, B and C are
adequately approximated by the series

f=u+vlog|fe|+wlogu ol )

The constants «, v and w are given in Table 2.
Reverting to dimensional coordinates, Eq. (20) gives
for concentration at the surface z=2,:

Q  [Ea(Bre kL)
X (x,20) =———e“[———] .
s L

21

(20a)

This formula has been obtained for an area source ex-
tending from x=0 to x=0o with a uniform emission
flux Q. A finite width source, which extends from x=0
to &=, and is zero for x>, can be represented as a
superposition of two semi-infinite sources: the source
with strength Q from x=0 to x=0o0 and a source with
strength (—Q) from x=x, to x=, so that concen-

— : . — —
L L<O Lo |
A
i+ :
o3}
A
B O-ZF \ |
oir : .
002+ - bt +
ooif _
C
7S] S — 1
0’02 — l- l- l- i l. lT A_
-10” -102 <107 -0 10t 1% 10? 10”
%o

F1c. 2b. Dispersion coefficients 4, B, C for an
area source [Eq. (20)].
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TaBLe 2. Constants #, », @ which determine the dispersion
parameters 4, B, C (area sources) and P, Q, R (line sources)
through Eq. (21).

u v @
4 1.148 —0.2142 0.007255
L>0 B 0.3633 0.08424 0.008037
C —0.008264 —0.01239 —0.002463
4 —0.08601 —0.8167 —0.07174
L<O0 B 0.06567 —0.04062 —0.008410
o —0.002014 0.004143 0.000552
P —0.1761 —0.2602 —0.04611
L>0 Q —0.5667 0.1100 0.01067
R —0.008543 —0.007481 —0.0003049
P —2.427 —1.160 —0.1627
L<O Q —0.5760 0.2991 0.03915
R —0.09131 —~0.02814 —0.002901

tration for > x, is given by

Q ka B+C In (k%z/L)
s Lef[]
L

(2

k2 (o — ;) ) BHC Wtk z—2/ L]

Area sources encountered in practice are in the form of
grids with assigned values of source strength for differ-
ent area intervals, Eq. (20) can be simply extended for
such a source by representing it as a superposition of
several semi-infinite area sources and using (20a) for
each of them. An application of this procedure to an

‘urban area source has been given by Lebedeff and

Hameed (1975a). In general, for a variable source Q(x)
for xo<x<x1, concentration at z=3z, is given by the
Riemann~-Stieljes integral

Q (z1—%0) [~ E2,B+C In(k2z/L)
X (%,20) =—e4 / I:-——:] dQ(x1—x).
' ku* 0 L
(20c)

As mentioned in Section 1 the concentration distribu-
tion for an infinite line source at right angles to the mean
wind direction is obtained from the area source solution
by differentiation with respect to x. Values of surface
concentration N, for a line source obtained in this
manner are shown in Fig: 3a as a plot of In(LNo/k?)
vs In (k2x/20). The following interesting features may be
noted in this figure:

1) Very close to the source the concentration is
primarily determined by the roughness length and not
by the stability of the surface layer. Concentration at
a given g is larger for smaller values of z,.

"2) As the effluent travels downwind the effect of
atmospheric stability becomes more prominent. For a
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Fic. 3a. Predicted concentration at z=3z, as a function of downwind distance from a line
source. Note that for convenience the concentration has been multiplied by L/K2.

given |{o| the concentration becomes progressively
larger for the stable case as compared to the unstable
case.

3) The negative slope of the curves in Fig. 3a is
largest for {o= —0.1 and smallest for {p=+0.1, i.e., for
a given |L|, concentration as a function of a distance
falls off most rapidly for large values of z, in unstable
conditions and for small values of 2, in stable conditions.
These features of the dispersion curves may be explained
by noting that the effect of an increase in the roughness
length 2, is to reduce values of surface concentration
downwind. This is because the wind velocity becomes
zero at z=2; [Eq. (8)] while the eddy diffusivity be-
comes zero at =0 [Eq. (7)]. Thus if we compare two
situations with different values of z,, then near the
surface the wind velocities in the two cases are the same
but the eddy diffusivity is larger for the larger z,. The
larger diffusivity results in more rapid diffusion of the
effiuent upward and therefore reduced concentrations
at the surface. This explains the occurrence of smaller
concentrations for larger values of |{o| as noted in 1)
above. The point noted in 2), that for a given |{q| the
concentration is larger in stable conditions in com-
parison with unstable conditions, is explained by the
behavior of the diffusivity function as shown in Fig, 1b.
The magnitude of the diffusivity increases much more
sharply with height in the unstable case and this leads
to smaller values of the surface concentration.

The property 3) of the line source distribution means
that the downwind distance over which there is a
significant accumulation of concentration is the shortest
for large negative values of {, and longest for large
positive {o. Now an area source may be regarded as a

large number of line sources placed adjacent to each
other. This property of the line source therefore implies
that in an area source, for large and negative {o, each
point would receive significant amounts of concentra-
tions from only a small number of upwind line seg-
ments; the concentration would therefore be small in

_ this case and would also increase slowly with x tending

ultimately to a nearly constant value. In the opposite
case of large and positive {, each line source segment
contributes significantly over a long downwind dis-
tance; the concentration in the area source is therefore
large and continues to build up rapidly as x increases.
This behavior of the area source concentration distribu-
tion is clear in Fig. 2a.

We have fitted the line source concentration distribu-
tions with the series (19) in the region 102 < k%x/z,< 106,
Again, we find that three terms of the series are sufficient
to represent the computed concentrations accurately
so that we may write

k2

No(%) =-£8PEQ+R Ink, (22)

The parameters P, Q and R are shown in Fig. 3b. Values
of the constants %, v and w required to represent P, (), R
by Eq. (21) are given in Table 2.

In Figs. 2b and 3b it is interesting to note that the
dispersion parameters do not change smoothly as the
stability changes from stable to unstable. This is per-
haps a reflection, in the realm of dispersion phenomena,
of the discontinuous structural changes that take place
in the surface layer at the transition between the two
stability regimes.
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Fi1c. 3b. Dispersion coefficients P, Q, R
for a line source [Eq. (22)].

We also note in Fig. 3a that as L becomes large the
curves for 4§, tend to come together to form nearly a
straight line, i.e., as one approaches neutral stability
the contribution of the term RIn§ in (22) becomes
small and the concentration varies as £¢ We find that

=—1.14 for ¢{p=-—0.0001 and Q= —0.83 for
$o=-0.0001. The average of these Q values is —0.99.
It is well known that concentration from a line source
varies approximately as ! under neutral conditions
(Pasquill, 1974). Also, we note in Fig. 3b that R is
negative for <0, and positive for L>0. Thus in
conditions different from neutral, the deviations from
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the simple power law behavior are such that the magni-
tude of the exponent (Q+ R In¢) increases with x for
L<0, and decreases with x for L>0. In stable condi-
tions, however, as {o becomes large R approaches zero
and a power law again becomes a good approximation.
For comparison, we note that for an area source (Fig.
2b) the parameter B is always positive while C is nega-
tive for L<0 and positive for L>0. Thusas one departs
from the neutral case the exponent (B+C In§) increases
with « for L>0 and decreases with x for L<0. Also C
approaches zero as {o becomes large in the positive
direction so that the concentration effectively increases
as x% in this regime.

The conclusions drawn in the previous paragraph
about the power law behavior of the line source concen-
tration distribution are in agreement with the results of
the line source calculation of Yamamoto and Shimanuki
(1961; see their Fig. 4). In Table 3 we compare line
source concentrations at the surface predicted by our
calculation with those given by Yamamoto and
Shimanuki in their figures at several values of down-
wind distance. The difference between the two sets of
values is small (generally well within a factor of 2) for
the unstable case and for small ¢ in the stable case. The
disagreement becomes significant for {o=-0.01. It is
known, however, that the equation which was used by
these authors to obtain ¢ gives erroneous results in
stable conditions (Yamamoto and Shimanuki, 1966).

As discussed in Section 2 and in the Appendix it is
assumed in the integral method that the effluent rises
to a height §(x), above which the concentration as well
as the flux are taken to be zero. The function é(x) there-
fore gives the shape of the effluent cloud in the integral

TaBLE 3. Comparison of the prediction of line source concentration distribution by the calculation of Yamamoto and Shimanuki
(1961) and the present calculation. The quantity tabulated is LN ofy/k2. Values given for Yamamoto and Shimanuki have been estimated

from the figures in their paper.

* L<0 L>0
Yamamoto Yamamoto
and and

x Shimanuki Integral Shimanuki Integral

[l %0 (1961) method (1961) method
0.0001 125000 4.3X1073 43X 1075 5.6X1078 3.7X10™8
- 25000 2.1X10 2.6X10™ 2.2X10™ 1.1X10™
5000 1.0X10°3 1.4X 1072 - 1.0X103 1.4X107
1000 4.0%x1073 6.4 1078 4.0X1073 7.0X107%
625000 2.6X 1075 5.0X 107
125000 ° 3.6 1078 2.3x10°6 8.9X10-8 1.5x10™4
0.001 25000 1.9 10~ 2.0X10™4 2.3X10™ 5.0Xx10™*
5000 1.0X 1073 1.1X1073 1.0X 1073 1.8x1073
1000 4.0X1073 6.0X 1073 4.2X107? 7.2X1078
625000 5.1X 1075 1.2X10™
125000 1.4X10™ 34X10™
0.01 25000 1.3X10™* 8.8X10-% 3.8X 10 1.0 1072
5000 7.8X10™ 6.7X 10~ 1.5 1073 32x10°3
1000 3.8X103 3.9X10™3 6.5X107 1.0X107
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FiG. 4. The height of the polluted layer é for
different stability conditions.
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method and this is shown in Fig. 4 for different values
of ¢o. As expected, we find that the cloud height is much
larger in the unstable surface layer in comparison with
the stable surface layer. Kazanskii and Monin (1957)
have carried out experiments on dispersion of smoke
emitted by a line source. They have photographed the
shape of the smoke cloud under various stability condi-
tions and their conclusions about the variation of cloud
depth with & and its dependence on stability, are
qualitatively the same as presented in Fig. 4 (compare
with their Figs. 12 and 6a). It may be noted here that
the height & (x) for an area source is the same as that for
a line source because, again regarding the area source
as a succession of line sources, the height of the efluent
cloud from a particular line segment always remains
lower than that of the preceding line segment ; thus the
height §(x) for the area source is the same as that for
the line which represents its upwind edge.

4. Conclusions

Using empirically derived vertical profiles for mean
wind velocity and eddy diffusivity we have solved the
two-dimensional diffusion equation to obtain the
distribution of surface concentration of inert effluents
from area and line sources in the horizontally uniform
and stationary surface layer. The concentration distri-
bution depends on the parameters u,, L and z, and can
be represented over distances of practical interest by
the simple formulas (20) and (22).

The results are obviously limited by the reliability of
the flux-profile parameterization of (3) and (4). These
are expected to be good representations of steady-state
conditions in open countryside where the terrain is
nearly uniform; their validity for very different condi-
tions, however, such as found in urban areas, is question-
able. Also, although the surface layer is a useful approxi-
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mation, it has interactions with the region above it, the
neglect of which is also a limitation. Clearly, there is
need for careful parameterizations of the atmospheric
boundary layer under more general conditions. Study
of urban boundary layers is of special interest for under-
standing air pollution dispersion. The study of disper- -
sion in the surface layer, presented here, shows that
availability of more realistic boundary layer profiles
can have a significant impact on the feasibility of mak-
ing air pollution forecasts under general conditions.

APPENDIX

Application of Integral Method to the
Diffusion Equation

In the integral method one assumes a simple analyt-
ical form for the solution X (x,2) in which the z depen-
dence is explicitly specified. The solution is substituted
in the diffusion equation and integrations over z carried
out, resulting in an ordinary differential equation which
yields X,(x), the surface concentration. This procedure
is carried out subject to the boundary conditions and
some additional constraints deduced from the nature
of the problem. It is assumed that the diffusion of
effluents in the z direction is limited to a depth §(x) and
that the flux outside this depth is zero:

X(22)=0, z=b(x), (A1)

X (2,2)

———=0, z=0(x). (A2)
0z

The so called “smoothing condition” may also be
imposed, i.e.,
*X
—=0, z=0d(x).
022

(A2')

The accuracy of the solution obtained by the integral
method obviously depends on the degree to which the
assumed z profile of the solution simulates the true
profile. To gain insight into the problem of choosing a
suitable profile for the integral method it is instructive
to consider the diffusion equation with the coefficients
u(z) and K(2) given by the power laws of Eq. (2),
because the exact solution of this problem is available
for comparison. First, we note that if we integrate the
diffusion equation (1) over 3, the result depends on
K (z) only through its values at the boundaries, ie., a
solution obtained by the integral method does not
incorporate the variation of K between the boundaries.
It is therefore desirable to convert the equation to one
with an effectively constant diffusivity by using the
transformation
dz

= . (A3)
K(3)
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The flux boundary condition (5) now becomes

X

—=-0,
dw

(A4)

w=0.

When K(z)=K¢z* [Eq. (2)], the transformation
variable is

om—— b, AS
Ko(l—B) (*3)

and the diffusion equation becomes
X

X
K o[ Ko(1 —B) Jwr-—=—o,
: 9x  Juw?

(A6)

where

#= (a+8)/(1-8).

The usual integral method approach is to assume that
the vertical profile may be approximated by a poly-
nomial. A simple example of a polynomial which satisfies
the compatibility relations (A1)-(A2’) is the cubic:

W\?
Xo=xaf1-2),
8

where X 40(x) is the concentration at w=0. Application
of the integral method then gives (Lebedeff and

(A7)

percent error in surface concentration

-gol— L 1
0.2 1 o
H

Fic. Al. Percent error in the predicted surface concentration
as a function of u=(a+pg)/(1—pB) for three different assumed
vertical profiles of concentration: A, the cubic profile [Eq. (A7)];
B, the profile of Eq. (A13); and C, the profile of Eq. (A13).
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X 40(x) ="§[

3x
1Kot (1 —B)*B (14w, 4)

1/ (24x)
] . (A8)

where B(a,b) is the beta function. The exact solution of
this problem is (Lebedeff and Hameed, 1975b)

1 (24u)

Xg(x,2)=Xpo(x) (A9)

F(_V) )7
etn

where

Ug Z?-J—a—ﬁ

=K0(2+l¥‘—‘6)2 X

and T(a,b) is the incomplete gamma function. For
concentration at z=0, this yields

1
X go(x) =*Q‘

o (1—6)1“(2—1_—:)

24-a—B)2K jx U &)
X[L_L] . (A10)

Uo

y

Note that the x dependence of the two solutions X 4o
and X go is the same ; the constant multiplying !/ @+#) is
different in the two expressions. The percent error in
X 40 as a function of u is shown as curve A in Fig. Al.
The error is seen to be small for u<K1 but increases
progressively as p increases to larger values. One may
therefore suspect that the Ansatz (A7) of the cubic
profile becomes inappropriate for p>>1. This may be
seen in Figs. A2 and A3 where the shape of the cubic
profile near w=0 (curve A) is compared with that of
the exact solution (curve E). For each profile X, the
quantity X/X go has been plotted as a function of Iny,
so that the curves represent the z distribution of concen-
tration for a given x. Note that in Fig. A2, with p=0.5,
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the profile of the exact solution decreases smoothly
from 1 and the cubic profile follows it closely. In
Fig. A3, on the other hand, with u=23, the profiles
drop sharply near y=0 and the cubic profile differs
considerably from the exact solution. Thus a simple
polynomial in w is not flexible enough to represent the
solution in the neighborhood of w=0 for large u.

It may be observed that for values of o and 8 of
practical interest, the magnitude of u= (a+8)/(1—28)
[and the error in solution (A8)7] is much more sensitive
to the value of 8 than to a. The difficulty of the cubic
profile for large u (i.e., 38— 1) is therefore associated
primarily with its inability to correctly account for the
diffusion process. This is indicated also by the fact that
as B— 1, w=3"8/K,(1—B) becomes ill-defined and
the flux boundary condition is not satisfied.

From the definition (A3) we note that the proper
variable for 8=1 is w=Inz. However if we choose a
polynomial profile in terms of Inz we find that the flux
condition cannot be satisfied. Lardner and Pohle (1961)
applied the integral method to the equation

X 99X

g =—g—

, (A11)
dx Jz 0z

Le., with a=pB=1, and showed that a profile which
satisfies the boundary conditions and gives an accurate

solution is
z\?2 b4
X (x,2) =X0(1 ——) ln(—).
) 8

Actually, this profile gives good solutions also for other
values of « and 8 if 8~ 1 and u is large. For w=2z"#/
K(1—p), the profile (A12) may be written

o),

which gives, with the usual integral method procedure,

(A12)

Xu=([

In Fig. A1 the percent error in this solution is shown as
curve B. The error is less than 109, for x> 10 but in-
creases rapidly as u becomes small. The suitability of
profile (A13) for =1 is apparent also from Figs. A2
and A3. It is seen to give a good approximation to the
profile of the exact solution near z=0 for large p in
Fig. A3, but becomes inappropriate for small yx in
Fig. A2. This profile correctly incorporates the singu-
larity at 8=1.

From this comparison it follows that a profile which
reduces to (A7) for =0 and to (A13) for =1 would

" U @i
uK (1 =) B(1+e, 3)—B(2+a—8, 3)]] .

(A14)

be suitable for use with the integral method for all
values of 8. One such profile is

seoxfo- oA ] s

This gives
_or v
@2—B)Luok (1 —)++B

Xe¢a

1/ @+w)
] . (AL6)
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where

R R )
(1+e) (2+a) (2+a—p)

s a-p
" (3+a—B) G+a—26)

In Fig. Al it may be seen that the error in this solution,
curve C, is very small for the whole range. This is
because the profile (A15) gives a faithful representation
of the exact solution near z=0, as shown in curves C
in Figs. A2 and A3.

The diffusion equation (A6) represents a problem
with an effectively constant diffusivity and an effective
wind velocity which varies as w*. The foregoing dis-
cussion of this problem covers the range u=0 to u —.
{The case a=B=1 [Eq. (A11)] corresponds to an
effective velocity proportional to ¢2¢.} This encompasses
the whole domain of problems in which %(z) and K (2)
are represented by simple and continuous functions of z,
and provides guidelines in choosing a suitable profile
for the integral method.

To summarize, the choice of the profile depends on
the behavior of the diffusivity function near the surface.
In the surface layer problem [Eq. (9)] we note that
Fn({) < ¢ at {=0. By means of the transformation (12)
we preserve this behavior and cast the problem in the
form possessing a linear diffusivity [Eq. (9a)] for
which the profile (A12) gives accurate solutions.
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